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SEMICONTINUOUS SOLUTIONS OF HAMILTON-JACOBI EQUATIONS~ 

I. ROZYEV and A-1. SUBBOTIN 

Generalized (viscosity) solutions of Hamilton-Jacobiand Bellman-Isaacs 
equations are defined by means of pairs of differential inequalities. 
This type of solution exists, is unique and in the case of the Bellman- 
Isaacs equation, is identical with the value function of the corresponding 
differential game. Unlike the published literature (/l-8/ etc.), in 
which continuous solutions were considered, differential games are 
considered here with semicontinuous payoff functions and correspondingly 
semicontinuous solutions. Definitions are introduced fpr these solutions 
and existence and uniqueness theorems are proved. 

Problems in which the value function {Bellman function) may fail to 
be continuous are well-known. For example, in a differential game of 
pursuit-evasion the payoff function, defined as the time to capture, is 
lower semicontinuous and the corresponding value function is also lower 
semicontinuous. In particular, the Bellman function of the optimum 
response problem is lower semicontinuous; its properties have beenstudied 
by many authors, and differential relations have been derived /9, lO/ 
that represent the optimality principle in the response problem. 

The theory of differential games provided a suitable framework for 
studying many questions in the general theory of Hamilton-Jacobi equations. 
The aim of this paper is to develop an apparatus of differential in- 
equalities and define generalized (viscosity) solutions for the case in 
which these solutions are semicontinuous. To fix our ideas, a differential 
game with fixed terminal time is considered. Results are then formulated 
for the game of pursuit-evasion. 

1. A differential game with fixed terminal time. Let the motion of a controlled 
system be described by the equation 

a' = f (t, x, u, v), u E P, v E Q; f: T x Rn X P x Q + R” (1.1) 

where P and Q are compact subsets of spacesRPand R+', respectively. The function f is con- 
tinuous and satisfies a Lipshitz condition with respect to z. We shall assume that the game 
begins at a time t, E ?’ = lo,81 and ends at a time t = 8. It is also assumed that the follow- 
ing condition holds: 

gp" FE=&x < % f (4 5, u, VI> = U.2) 

max min <s, f (t, x, u, v)>, 
vaQ u&P 

(t, .T, s) 5 2’ X R” x R” 

f<ft b) is the scalar product of vectors a and b). 
The differential game is considered in the class of positional strategies. The payoff 

functional is defined by 

y (z (.)) = Q (z (8)); .z (.): [to, El]--+ A”, a: R”+ R (1.3) 

where x(e) is the actually realized motion of system (1.1) and u is a give function. A 
formalization of positional differential games may be found, e.g., in /11-13/. If U is a 
(lower or upper) semicontinuous function, then for any initial position (&, 2,) E T x R" 
there exists a game value w (tc, %I). If the value function (t,z)-+ 0 (I,z) is differentiable 
in some domain, then in that domain it will satisfy the Bellman-Isaacs equation 

awlat 4” H (I, 2, awlax) = 0 0.4) 

The value function satisfies the boundary condition 

0 (0, 2) = a(z) (1.5) 

In Rq.fl.4) H(t,z,.s) is the Hamiltonian of system (1.11, defined by the equality 

*Prikl.~atem.Mekhan.,52,2,179-185,1988 141 



142 

Ii (t, 2, s) = min max (s, f (t, z, u, v)) 
2Ltl-J “EQ 

Below we shall define the notation of a generalized solution of problem (1.4), (1.5) 
the case when the payoff function, and hence also the value function, are semicontinuous. 
constructions we propose develop results obtained in /l-8/ for continuous or Lipschitzian 
functions (T anti w. 

Let W: T X R” -+ R be some functions. Choose a point (t,s)+~ T" x R" (T" 
a vector h= R”. We introduce the following notation. 

10, 0)) and 

(1.7) a_@(t,2)l(l,W= lirn Qd+o (t, z) I(l, h) = i% P 
~lo~llslllo alagIlL 

(a = Lo (t + 6, x + 6 h + 6g) - 0 (t, x)W) 

G,- (t, z) = {h E R”: 3-o (t, x) ) (1, h) < 0) 

G,+ (t, z) = {h E R": cY+o (t, x) j(1, h) > 0) 

po- (L x I 1) = sup, (h, l>, h -7 G,- (t, 5) 

pot (t, I 1 I) = inf, (h, l), h ,' G,+ (t, z) 

Considerthedifferential inclusion relations 

(co(.) denotes the convex 
The set of absolutely 

differential inclusion and 

(to? 501 u)). 

x’ (t) E P, (6 x (t), v), I’ (t) Et F, (t, x(t), u) 

F, (t, x, u) = co (f (t, x, u, u): u .E P} 

F, (t, x, u) = co {f (t, x, u, u): u E Q} 

(1.10) 

(1.11) 

hull of a set). 
continuous functions x(.): T+R” satisfying the first (second) 
also the condition x (to) = so will be denoted by X,(t,,x,,v) (X, 

(1.6) 

in 
The 

(1.8) 

(1.9) 

Definitionl.l. A supersolution of problem (1.4), (1.5) is a lower semicontinuous function 
o: T X R”-+ R satisfying the conditions 

po- (t, x I 1) > H (4 I, l), (t, x, I) E T” x R” x R” (1.12) 

w (0, x) > u (.z), x E R” (1.13) 

Definition 1.2. A subsolution of problem (1.4), (1.5) is an upper semicontinuous function 
o: T x R”-+R satisfying the conditions 

PO+ (t, x 1 I) < H (t, 5, I). (t, .z, 1) cz T” x R” x R” (1.14) 

0 (0, x) < (J cd, x F R” (1.15) 

Definition 1.3. A function 0": T X R”+ R is called a generalized solution of problem 
(1.41, (1.5) if there exist sequences of supersolutions ok and subsolutions wk @=I, z,...), 
converging pointwise to w". 

Inequality (1.12) means that 0 has the u-stability property /6, 11, 13/. This property 
may also be defined by the equivalent inequalities 

SUP inf 10 (b 2 (&A) - CJJ (6, x1)1 < 0 
6 1.. 

(1.16) 
XI. D) x(.I‘sY,(t,, x,. 1)) 

(b, xl, u) E T”.x R” X Q, t, E (tl, 01 

max min 
oaQ hEF,(I.x. v) 

8-w (k 5) I(1, h) < 0, (t, z) E T” x R” (1.17) 

Similarly, inequality (1.14) means that w has the v-stability property and may be re- 
placed by either of the two equivalent inequalities 

inf SUP 
VI. XI, f, U) r(.EX,(t,. x,. U) 

[a (L’Z (h)) - 6J (tl, s,)l > 0 (1.18) 

min max 
UEP kF.(f.x,u) 

8,~ (t, 5) IV, h)j> 0, (t, 5) E T" x Rn (1.19) 

The following existence and uniqueness theorems hold for the generalized solutions. 

Theorem 1.1. Let the Hamiltonian II satisfy equality (1.6), where f satisfies the 
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conditions enumerated above. If there exists a generalized solution of problem (1.4), (1.5), 
then it is unique and identical with the value function of the positional differential game 
(l.l), (1.3). 

Theorem 1.2. Under the assumptions of Theorem 1.1, let the function c be lower (upper) 
semicontinuous and bounded. Then a generalized solution of problem (1.4), (1.5) exists, is 
unique, is identical with the value function of the differential game (1.11, (1.3) and is 
a supersolution (subsolution) of problem (1.4), (1.5). 

One result of Theorem 1.2 is that if IJ is continuous, then a solution of problem (1.4), 
(1.5) is also a sub- and supersolution of the problem. The proofs of Theorems 1.1 and 1.2 
rely on an extremal construction evolved in the theory of positional differential games /ll, 
13/. 

2. Stability properties and the extremal construction. AS observed above, the 
properties of u- and v-stability may be defined differently. This statement will now be 
elucidated. 

Lemma 2.1. If 61 is a lower (upper) semicontinuous function, then conditions (1.121, 
(1.161, (1.17), ((1.14), (1.18), (1.19)) are equivalent. 

The proof is essentially the same as the proofs of analogous propositions in /6, 8, 14/*. 
(*See also W.G. Guseinov, On a definition of the stability property of the value function of 
a differential game by inequalities, Baku, 1986. Dep. at VINITI 04.04.86, No.2408-B). It uses 
Lemma 2 of /15/. 

Theorem 1.1 can be proved along the same lines as Theorem 5.3 in /6/. 

Proof of Theorem 1.2. Consider the case of a lower semicontinuous function a. Put 

E = epi a = t(r, x) E I? x R": r > a (z)} 

R, (x) = {r E S;.dist I(r, z), El > a} 

a= (2) = max R, (5), a fz (0, 11 

dist [(r, z), El = min [(r - r*)* + 11 z - x* ll*l'A, (r*, z+) E E 

The function a= has the following properties for any a C (0, 11 and XER": 

lima= (y) < aa (I), lim aa (y) = a (2) 
I-= a lo.u-x 

(2.1) 

aa (5) < a (5) - a 

SUP=,~ loa (2) I< i-c 00; 0% (4 > 0% (4, al< aa 

Let Ola (Qza) denotes the set of functions o: T x R"+[--1.11 satisfying condition 

(1.16) ((1.18)) and the inequality o (8,x)> a"(z) (o (0,x)< a=(x)) for x E R". 
Consider the function 

WG (t, 5) = inf 0 (t. x), 0 C Pla 

As shown in /16/, 6P E Qla 0 Q,=. From the last property in (2.1) it follows that 

i-2,“* c t-p, 0% (t, 2) < co=, (t, 2) for a, < a* 

It can be shown /16/ that the function o" defined by 

(2.2) 

w" (t, 2) = lim @= (7, Y) 
a 10,zw. s) 

(2.3) 

satisfies Definition 1.1, i.e., it is a supersolution of problem (1.4), (1.5). 
We define the function 

o+a (t, 2) = 
- 
hm aa (r. Y) 

(1. UJ_r& IJ 
(2.4) 

It follows immediately from the definition that this function is upper semicontinuous. It 
satisfies inequality (1.18) (seethe analogous assertion in /16/J. Using the first and third 

of properties (2.11, we obtain the limit o+a@,x)< c(x), xc R". Thus the function ~+a is 

a subsolution of problem (1.4), (1.5). 
Consider the sequence of functions 'ox = 02, k = 1, 2, . . . , CQ+,(CQ, ak_tO as k+oo. 

It follows from (2.2) that o,(t,x) is an increasing sequence, and so the limit lim q, (t, x) = 

0, (t* x) exists as k-t 00. Using the fact that O" is a supersolution and o+a a subsolution 
of problem (1.4), (l.SJ, one can show that o"(l,x)> o+"(t,x) /6, 16/. Therefore o0 (t, 2) > 

0, (& x). On the other hand, by (2.3) and (2.4) we have a0 (& x) < o+ (t, x). Consequently, 
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a0 (t, x) = 0, (1, x). Thus we obtain (0' (t, 5) = lim oh. (t, r) as k+w, where 0" is- a super- 
solution and wc (k = 1, 2, . . .)a sequence of subsolutions. This proves Theorem 1.2 for the 
case of a lower semicontinuous function Cr. The proof for upper semicontinuous B isanalogous. 

3. Game-theoretic fast-response problem. We will present some results relating 
to the problem of (M,N)-approach /11, 13/. Let the motion of a controlled system be de- 
scribed by Eq.(l.l). Suppose we. are given sets MC NC IO,01 XR", where 8,<0. The 
set M is the objective set for the first player, whose goal is to make the point (C 5 (9) 
reach M in minimum time. The set N is a phase constraint, requiring that, on its way from 
the initial position to M, the condition (1, 5 (Q) E N is satisfied. 

The payoff functional 'C(X(.)) is defined as follows. Let s(e): fl,, 61+-R” be a con- 
tinuous function. We put 

T (5 (.)) = fz F ito, 61: (z, 5(x)) F IM, ff s(t)) E Iv, to< t < 2) (3.1) 

1 

infT(z(.)), T(z(.))fG 
‘@(.))= 8, T(z(.))=O 

Instead of 0 we could have taken any number 6* >6,, in particular, the "improper" 
number too. 

If the sets M and N are closed, it is known that the differential game (1.11, (3.1) for 
any initial position (to, s,)E T XR" has a value a0 (to, x0). If the value function 
o" is differentiable in some open domain OC T XR”, it satisfies Eq.(1.4) in that domain. 
It follows from the definition of the payoff function (3.1) and the value function that 

a0 (t, r) > t, v it, r) E r x R" (3.2) 
{ (t, z): coo (t, cc) = t} = M, { (t, x): d (t, .z) < 6,) c N 

It is also known that if the sets M and N are closed then W' is lower semicontinuous. 
In order to define the value function as a generalized solution of problem (1.4), (3.2), 

we propose once more to replace Eq.(1.4) by a pair of differential inequalities. Note that 
the following definitions do not require N and N to be closed sets. 

Definition 3.1. A supersolution of problem (1.4), (3.2) is a lower semicontinuous func- 
tion w:TxR"+T satisfying the conditions 

PO- (t, 5 I 0 > ff (L 5, 4, ft. x) E (T” x R”)\n&, I ERn 

o (t, x) > t, (t, z) c T X R" 

{(t, 5) E T x R": 0 (4 r) < 0,) c N, 

where M, and N, are certain closed sets such that &CM, N,cN. 

Definition 3.2. A subsolution of problem (1.4), (3.2) is an upper semicontinuous func- 
tion w: T x Rn+ T satisfying the conditions 

eo+ 0, x I 0 G H (6 x, 0, (t, x) E N” 

0 (t, 5) 2 t, (8, z) & T ‘x R” 

{(t, z) E T x R” : o (t, x) = t) 3 MO 

where Hi" and N" are certain open sets containing M and N, respectively. 

Definition 3.3. A function w": T X Rn+ T is called a generalized solution of problem 
(1.4), (3.2) if there exist sequences of supersolutions gL and subsolutions wlr (k = 1,2, . ..) 
that converge pointwise to o". 

Analogues of Theorem 1.1 and 1.2 hold for the game-theoretic fast-response problem. 

Theorem 3.1. Let the Hamiltonian H be defined by (1.6) and assume that the function f 
satisfies the conditions enumerated in Sect.1. If there exists a generalized solution to 
problem (1.41, (3.2), it is unique and identical with the value function of the differential 
game (l.l), (3.1), i.e., with the function defining the optimum outcome in the game-theoretic 
fast-response problem. 

Theorem 3.2. Under the assumptions of Theorem 3.1, let the sets M and N be closed. Then 
there exists a generalized solution of problem (1.4), (3.2), it is unique, is identical with 
the value function of the differential game (l-l), (3.1) and is a supersolution of problem 
(1.4)‘ (3.2). 

The proofs, which are for the most part similar to those of Theorems 1.1 and 1.2, will 
be omitted. 

Note that the usual procedure in the fast-response problem is to define the objective 
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functional not as the time z(z(.)) (3.1) at which the motion reaches the target set but as 
the time t(~(.)) elapsing up to that event. Clearly, t (3 (.)) = r (2 (.)) - t,, cu" (to. 21) = en (to, 50) - t0. 
where w0 is the value function in the fast-response with objective functional t (I (.)). The 
relationships (3.2) may be rewritten in terms of wO: 

w0 (& 3) > 0, V(t, z) E T x R” (3.3) 
{(t, z): w” (t, z) = O} = M, ((t, z): w” (t, z) < 8, - t) c N 

If w" is differentiable in some open domain Oc T x Rn, then in that domain is satisfies 
the equation 

adat + u (t, Z, a8/az) = -4 (3.4) 
It is also obvious how Definitions 3.1-3.3 must be modified when problem (1.4), (3.2) is 

replaced by (3.3), (3.4). Under the assumptions of Theorem 3.2, a generalized solution of 
problem (3.3), (3.4) exists, is unique and identical with the value function w0 in the fast- 
response problem. Note that here the differential inequalities may be written as follows (see 
(1.7), (1.11): 

4. Conclusion. The essential point in our definition of generalized solutions for 
equating of type (1.4) is as follows. A generalized solution is a minorant for supersolutions 
and simultaneously a majorant for subsolutions. In the definitions of supersolutions and sub- 
solutions, the original Eq.(1.4) is replaced by a differential inequality (1.12) or (1.14), 
respectively. These inequalities state that the value function is u- or v-stable and may be 
written in various equivalent forms. 

In this paper we have investigated two problems, defining generalized solutions for them 
and proving existence and uniqueness theorems. Analogous results hold for problems of other 

types, e.g., for differential games with payoff functions of the form 

9 

c (z (8)) + Sr, (& z(t), a(t), v(t)) & 
t> 

mff'Bp(t,l (t)) 
? 

Some of the assumptions adopted above are not essential. In particular, condition (1.2) 
can be dropped, but then inequalities (1.16) and (1.19) must be modified, as was done in /l, 

6, 8/, where problems with continuous payoff functionals were considered. 
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CONDITIONS FOR A SUM OF FORMS TO BE OF FIXED SIGN 
AND FOR STABILITY OF MOTION ON MANIFO~S* 

A.B. AMINOV and T.K. SIRAZETDINOV 

Lyapunov's corollary of the Stability Theorem /l/, a special case of 
which is Routh's theorem on tiie stability of the steady motion of a 
system with cyclic coordinates, provides a point of departure for the 
investigation conducted in this paper of the stability of motion on 
manifolds, particularly those defined by the integrals of the equations 
of the perturbed motion. Sufficient conditions are obtained for a sum 
of forms to be positive- or negative-definite and for the motion of 
polynomial systems to be stable on these manifolds. 

1, Given a sum of forms 

F(X)= 2 .W(x, As,...i 1, 
s 

x=(x1,. . .,x,)E&~ 
s=s 

and a manifold M defined by equalities 

p, (X) = B x$’ (x, !Bti,...i,) = 07 r=i,z,..., m;m<n* P<P 
8=1 

(f.2) 

where X(‘) (x, Ai ,... <,)y XY (X9 Bvi ,... i,) are multilinear forms of degree s, of the form 

A%, . . ., Q KG,. . .,is are real numbers, P, 4, s, m, n are positive integers, and Rxn is Euclidean 
n-space. Like terms in the forms are reduced and the terms are assumedtobelexieographically 
ordered. 

We shall determine the sufficient conditions for functions (1.1) to be positive-ornegative- 
definite under constraints (1.2). 

Let RN, denote the Euclidean space of vectors y =(y,, . . . . go) and @: R=-+R,N the 
mapping defined as follows: 

y, = x19, y, = slq-'x*, . . ., y, = x1-x* 

. *, YN-n+l=slt 

U-3) 

i.e., yj =5i5i . ..5j. 1* and j 2 ilie. . . i,, where i, < i, < . . . < i,, ti, is, . . ., is = 1, 2, . . ., n; j = 

1, 2, . . ., iv. 
Lemma 1.1. A sUmOf forms F(x) (1.1) defined in &" is mapped by @ (1.3) into a 

certain quadratic form (q.f.1 
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